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Abstract. The axial next–nearest–neighbour Ising (ANNNI) model of finite thickness is studied. Using
mean–field theory, Monte Carlo simulations, and low–temperature analyses, phase diagrams are deter-
mined, with a distinct phase diagram for each film thickness. The robustness of the phase diagrams against
varying the couplings in the surface layers is analysed.

PACS. 68.35.Rh Phase transitions and critical phenomena – 75.70.Ak Magnetic properties of monolayers
and thin films – 64.70.Rh Commensurate-incommensurate transitions

1 Introduction

In recent years magnetism in thin films of a few atomic
layers has attracted much interest, both theoretically and
experimentally [1]. However, studies on the influence of
the layer thickness, L, on spatially modulated magnetic
structures seem to be very scarce [2,3], albeit the possible
lack of compatibility between the film geometry and the
modulations in the bulk as well as the effect of the sur-
faces on the ordering phenomena may lead to interesting
features.

In this article, we shall deal with this topic by
analysing phase diagrams of the axial next–nearest–
neighbour Ising (ANNNI) model [4–6] on a simple cubic
lattice. Due to its competing interactions, the model dis-
plays, in the limit of infinitely many layers, a phase dia-
gram with a plenitude of commensurate phases, including
those springing from the multiphase point at zero tem-
perature and those emerging from structure combination
branching processes at finite temperatures, as well as in-
commensurate phases and a Lifshitz point. Many of these
aspects have been observed experimentally, in particular
in magnets, alloys, polymers, and ferroelectrics, see the
reviews [4–6] and related recent work [7–12].

The intriguing structural complexities are severely af-
fected when the lattice consists of rather few layers per-
pendicular to the axis of competition. Of course, in the
case of periodic boundary conditions for the top and bot-
tom layers, the bulk phases which fit to the film thickness
still exist [4–6,13]. In the case of free boundary conditions
for the surface layers, describing more realistically ex-
perimental situations, novel surface–induced features may
evolve. The aim of this paper is to identify similarities and
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typical differences between the phase diagrams in the limit
of an infinite lattice and for thin films with free bound-
aries.

To study the influence of the surfaces in more de-
tail, we also varied the intralayer couplings in the surfaces
compared to those in the bulk. In semi–infinite systems,
one then encounters the well–known surface critical phe-
nomena with either ordinary or extraordinary and surface
phase transitions [14,15], depending on the strength of the
surface and bulk couplings. Note that critical properties
of the surface magnetization at the Lifshitz point in the
semi–infinite ANNNI model have been analysed recently,
refining results of mean–field theory [16] by doing Monte
Carlo simulations [17].

In the following, we shall mostly deal with thin films of
up to ten layers. For each film thickness, distinct phase di-
agrams in the (temperature–competition strength)-plane
are determined, using mean–field theory, low–temperature
expansions, and Monte Carlo simulations. Mean–field the-
ory is found to usually provide reliable guidance to the
correct phase diagrams; qualitative shortcomings are ob-
served especially in the case of vanishing surface couplings.
Brief accounts of some of our findings for equal surface and
bulk couplings have been given before [18,19].

The article is organized as follows: first the model and
the methods are presented, then the resulting phase di-
agrams are discussed. The paper is concluded by a sum-
mary.

2 Model and methods

We consider the ANNNI model on a simple cubic lat-
tice (setting the lattice constant equal to one) for films
of L layers, L > 2, with free boundary conditions for the
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surface layers. Each spin Sj , at site j, can take only two
values, Sj = 1 (spin ‘up’) or Sj = −1 (spin ‘down’).
The interactions are supposed to be ferromagnetic be-
tween neighbouring spins in each layer, J0 ≥ 0, as well
as between neighbouring spins in adjacent layers, J1 > 0,
and to be antiferromagnetic, J2 < 0, between axial next–
nearest neighbour spins, distinguishing one of the three cu-
bic axes, say, the z–axis. The strength of the competition
between the interactions along the z–axis is κ = −J2/J1.
The intralayer couplings J0 may be different in the (top
and bottom) surface layers, denoted by Js, compared to
those in the bulk layers, Jb, with the ratio r = Js/Jb.
For simplicity, we set Jb = J1. Changing the interlayer
coupling J1 relative to the bulk intralayer interaction, Jb,
modifies only quantitatively the phase diagram in the limit
L −→∞ [20–22].

The ground state properties of the ANNNI films are
readily obtained. We first consider Js > 0. The spins in
all layers are aligned ferromagnetically at κ < 1/2. For
κ > 1/2, and even film thickness L, the ground state con-
sists of pairs of layers with, say ‘up’ spins, denoted as a
‘2-band’ [23,24], followed by a 2–band of ’down’ spins, be-
ing obviously two–fold degenerate by interchanging the +
and − spins. If L is odd, then for 1 > κ > 1/2, the ground
state comprises one 3–band and (L− 3)/2 2–bands, being
(L − 1)–fold degenerate. For κ > 1, structures with one
1-band at the surface and 2-bands are stable, with a 4–fold
degeneracy. Both for even and odd number of layers L,
the degeneracy DL of the multiphase point at κ = 1/2 is
given by a Fibonacci sequence DL = DL−1 +DL−2, where
D2 = D3 = 2, corresponding to all possible combinations
of k−bands with k > 1, as discussed before [24,25]. For
L odd, at κ = 1, L + 3 structures have the same ground
state energy. For Js = 0, the situation at κ ≥ 1 is of
special interest, L being odd. At κ = 1, structures with
2-bands followed by an arbitrarily ordered surface layer
are degenerate, due to the compensation of the interlayer
interactions between the surface spins and those in the
adjacent and next–nearest layers. In the case of L = 3
and κ > 1, the orientations of the spins in one of the sur-
face layers are random, and completely antiparallel to that
random pattern in the other surface; in the center layer,
all spins have the same sign.

At non–zero temperatures, the stable phases have been
determined using mean–field theory, low–temperature ex-
pansions, especially about the special points (T = 0,
κ = 1/2) and (T = 0, κ = 1), as well as Monte Carlo
techniques.

In mean–field theory, the magnetization per layer, mi,
i = 1,2,...L, in thermal equilibrium follows from the stan-
dard equations [20,26–28]

mi = tanh((4J0(i)mi + J1(mi−1 +mi+1)
+ J2(mi−2 +mi+2))/kBT ) (1)

where J0(i) = Js for i = 1, L and J0(i) = Jb for the
other layers. Free boundary conditions are implemented
by setting mi = 0 for i = −1, 0, L + 1, L + 2. To ob-
tain the thermally stable magnetization pattern, we solved
equation (1) iteratively starting from all possible combina-

tions of fully ordered, mi = ±1, or completely disordered
layers, mi = 0, i.e. from, in principle, 3L distinct con-
figurations (the number may be reduced using symmetry
considerations). We then determined among the solutions
the one with the lowest free energy. Phase boundaries are
identified by singularities in the free energy and specific
heat. Obviously, a fine scan of the (temperature kBT/J1,
competition strength κ)–plane is rather computer–time
consuming, and the full analysis of the mean–field the-
ory was done for films of up to L = 10 layers. The ratio
r = Js/Jb varied from 0 to 1.5, which would cover, in the
limit L −→∞, both ordinary and surface transitions.

The transition to the paramagnetic phase may be stud-
ied for films of larger thickness, L, by analysing the lin-
earized form of the mean–field theory. From equation (1)
one obtains a matrix of rank L, with the eigenvalues de-
termining the phase transition temperature, Tc, and the
eigenvectors describing the critical magnetization pattern.
Films of thickness up to L = 50 were considered, especially
for competition ratios close to that of the Lifshitz point
in the infinite system, i.e. κ = 0.25.

The phase diagram close to the special ground states
at κ = 1/2 and 1 may be investigated by using exact
low–temperature expansions [23,24]. The stable phases
are identified by calculating the free energy resulting from
spin excitations for all structures being degenerate at the
two special points. Indeed, to establish the stable phases
springing from the special points for thin films (we stud-
ied films with up to ten layers), it usually suffices to do
expansions up to first order, involving merely a single spin
flip.

Complementary to the low–temperature analysis,
Monte Carlo simulations may be applied to study the
phase diagrams at higher temperatures. We used both
the standard single–flip Metropolis algorithm [29] and a
cluster–flip algorithm [30] (attention may be drawn to an-
other cluster–flip algorithm to simulate spatially modu-
lated structures in Ising models [31]). The main aim of
our simulations has been to check results of mean–field
theory, restricting ourselves to selected cases. Of course,
the layers are now finite, consisting of, say, M2 spins.
Thereby, finite–size effects have to be taken into account
(here, attention may be drawn to early Monte Carlo work
on the nearest neighbour Ising model on thin films [32]).
Typically M was varied from 10 to 100. To identify the
structures and boundary lines of the various phases, we
computed the energy, the specific heat, the layer magne-
tizations and corresponding histograms as well as correla-
tion functions between spins in different layers. Each run
was performed with about 106 Monte Carlo steps per spin,
when using the single–spin–flip algorithm. In the cluster–
algorithm, in each run usually about 2×105 clusters were
generated.

3 Results

For each film thickness L, distinct phase diagrams are ob-
tained. Before presenting them, we shall outline some gen-
eral features, as inferred from calculations for films with
up to ten layers.
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One may distinguish between phases corresponding to
ground states and those which are stabilized only at higher
temperatures. Especially, the ferromagnetic phase as well
as phases consisting of 2–bands augmented, for L odd, by
one 3–band or one 1–band, evolve from the ground states.
A ‘k–band’, at T > 0, means that spins in k adjacent lay-
ers are oriented predominantly in one direction, preceded
and followed by layers where the spins are oriented pre-
dominantly in the opposite direction. The 3–band tends
to be at or near to the center of the film at low tempera-
tures, when it gains entropy from easy spin flips in the two
border layers of the 3–band. The band, however, sticks to
one of the surfaces of the film when Js is rather weak so
that entropy is gained from energetically easy flips of sur-
face spins, as may be readily seen from low–temperature
expansions.

Phases corresponding to ground states with 2–bands
and one 3–band at or near the center (or at the surface)
of the film may be stabilized only at higher temperatures,
due to entropic or symmetrization reasons, while at low
temperatures the 3–band sticks to the surface (or center)
of the film.

The phases with one 3–band and one 1-band, L odd,
are separated, for Js > 0, by the transition line arising
from (T = 0, κ = 1); the line is at low temperatures of
first order. If the surface couplings Js are not very strong,
the line terminates in a critical point, above which the two
phases become indistinguishable. That point moves down
to zero temperature as Js vanishes.

Other stable low–temperature phases may spring from
the multiphase point (T = 0, κ = 1/2) for L > 5.
In fact, in the limit L −→ ∞, a sequence of infinitely
many periodic 〈32i〉 phases, i = 0, 1, 2, ..., ∞, arises
from that point (here and in the following, we are us-
ing or adapting the standard notation [23,24], setting the
sequence of bands in a phase in ‘〈〉’–brackets). For thin
films, the low–temperature expansions indicate the fol-
lowing systematics: If L is a multiple of 3, the 〈3L/3〉
structures become stable next to the ferromagnetic phase;
for L = 3n + 1(= 3n + 2), n > 1, they are replaced by
the 〈3n−14〉 (〈3n−15〉) structures. Further phases arising
from the multiphase point show up for L > 7, having, for
L = 8, two 3–bands and two 2–bands, and two 3–bands
and three 2–bands for L = 10. The 3–bands stick to the
surfaces of the film, when Js is sufficiently weak, as be-
fore. An increasing number of similar phases comprising
2–bands and 3–bands are expected to occur for thicker
films. In comparison to the 〈32i〉 phases, arising from the
multiphase point in the limit L −→ ∞, the sequences of
2–bands and 3–bands are slighty rearranged and modified,
reflecting the influence of the surfaces.

The transitions between the phases emerging from the
multiphase point are, at low temperatures, of first order.
Note that, for films, some, but not all these phases extend
up to the transition line to the paramagnetic phase, Tc.

Novel phases may become stable close to Tc. As may
be obtained readily from the linearized mean–field theory,
confirmed by Monte Carlo simulations, the ordered phases
directly below this transition line are alternatingly, as κ

increases, symmetric and antisymmetric with respect to
the center plane (being obviously a real layer for L odd,
and a fictitious plane for L even), changing thereby the
parity. Each change is associated with an abrupt decrease
in the average wavelength, as follows from a Fourier anal-
ysis of the magnetization pattern, mi. For odd L, the
magnetization in the center layer vanishes in the anti-
symmetric cases, denoted as ‘10–band’. There, the inter-
layer couplings with the neighbouring layers tend to com-
pensate. Such ‘partially disordered phases’ are, of course
not stable below the ordering temperature of the two–
dimensional Ising plane. They do not exist in the limit
L −→ ∞ [21,22].– Of course, as usual, the location of Tc
is largely overestimated in mean–field theory, as seen from
comparison with simulational data.

An interesting feature of the transition line to the
paramagnetic phase is the point where the ferromagnetic
structure becomes unstable against spatially modulated
structures, i.e. the Lifshitz point in the limit L −→ ∞.
In mean–field theory, for rather thick films of up to 50
layers, the surface magnetization is found to show in-
triguing crossover effects with an effective critical expo-
nent close to 1 in the vicinity of that point, in agreement
with the mean–field analysis on the semi–infinite ANNNI
model [16]. In a recent Monte Carlo simulation, the expo-
nent has been shown to be significantly affected by critical
fluctuations, acquiring a value of about 0.62 [17].

Further phases may show up at intermediate tempera-
tures, in particular, the 〈54〉 and 〈64〉 structures for L = 9
and 10. They are reminiscent of the plenitude of commen-
surate phases on the ferromagnetic side of the ANNNI
model in the thermodynamic limit [28], and more of them
are expected to occur in thicker films. Likewise, wider films
are needed to see indications of the systematic branching
processes involving structures with 2–bands and 3–bands,
as occurs for L −→∞ [28].

Note that the magnetization in a given phase may
change sign in some layers when varying temperature
and/or strength of couplings, keeping the symmetry of
the magnetization pattern about the center plane (sym-
metric, antisymmetric or asymmetric). For instance, for
an (anti–)symmetric phase such a reversal of the sign may
happen in the magnetization of the surface layers belong-
ing originally to k−bands with k > 2, when κ is increased,
especially for weak surface couplings. In any event, we
characterise a phase by the sequence of bands which oc-
curs at lowest temperatures in case of equal surface and
bulk couplings, following the unambiguous notation for
the infinite lattice [24].

We shall now discuss results for each film thickness,
from L = 3 to L = 10, illustrating the general features in
selected cases in more detail.

In films with three layers, L = 3, the ferromagnetic,
the 〈21〉 and the 〈1101〉 phases show up. As found in simu-
lations, for equal surface Js and bulk Jb couplings, the fer-
romagnetic phase is stable at κ < 1, the other two phases
occur at κ > 1, with the transition between the 〈21〉 and
the partially disordered phases being of second order, see
Figure 1, and belonging to the universality class of the
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Fig. 1. Phase diagram of the ANNNI model for L = 3 and
Js = Jb using Monte Carlo simulations. The curves are guides
to the eye. Phase boundaries of first (second) order are denoted
by dashed (solid) lines.

two–dimensional Ising model. At κ = 1, the ferromagnetic
and 〈21〉 phases coexist, with the transition being of first
order. By weakening the surface interactions, Js, the fer-
romagnetic phase extends to larger values of κ, due to the
entropic effect in the surface layers. In the limit Js = 0,
the 〈21〉 and 〈1101〉 phases are completely suppressed (this
aspect is not correctly described in mean–field theory). On
the other hand, by enhancing the surface couplings, the
〈21〉 and the 〈1101〉 phases are favoured and stabilized al-
ready at κ < 1, with the transitions to the ferromagnetic
phase being always of first order.

For L = 4, the phase diagrams are very simple, with
two ordered phases, the symmetric, ferromagnetic and the
antisymmetric 〈22〉 phases being separated by a first or-
der transition line arising from the special point (T = 0,
κ = 1/2). By weakening Js, the range of stability of the
symmetric phase is again enlargened. The 〈22〉 structure
is obviously favoured when the surface layers are more or-
dered, and thence its range of stability expands when Js
gets stronger.

Somewhat richer phase diagrams are encountered
when L = 5. For Js = Jb, one finds, increasing the
competition ratio κ, at low temperatures the ferromag-
netic, the 〈32〉, and the 〈221〉 phases, with the latter two
becoming unstable against the 〈2102〉 and 〈131〉 phases
at higher temperatures. Phase diagrams, obtained from
mean–field theory and Monte Carlo simulations have been
depicted before for the case Js = Jb [18]. The transition
line between the two asymmetric (with respect to the cen-
ter plane) 〈32〉 and 〈221〉 phases ends in a critical point
above which the phases become essentially indistinguish-
able. By weakening Js, the critical point moves to lower
temperatures. Eventually, in the limit of zero surface cou-
plings, there is only one asymmetric phase, with one of
the surface magnetizations going to zero on approach to
(T = 0, κ = 1). The phase diagram, as determined from
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Fig. 2. Simulated phase diagram of the ANNNI model for
films with five layers at Js/Jb= (a) 0 and (b) 1.5.

simulations, is shown in Figure 2a. Note that the 〈131〉
structure, being present close to Tc in the mean-field calcu-
lations, is squeezed out (as we checked for κ as large as 15).
In turn, the range of stability of the 〈2102〉 phase is under-
estimated in mean–field theory, similar to the situation for
equal surface and bulk couplings [18]. The magnetic dis-
order in the center layer sets in roughly at the transition
temperature of the two–dimensional Ising model, because
then the interlayer couplings J1 and J2 to the axial spins
in the two adjacent and two next–nearest layers are largely
cancelled. When increasing the surface couplings Js, the
〈131〉 phase is stabilized, as shown in Figure 2b, in qual-
itative agreement with mean–field theory. Actually, the
magnetization then tends to be close to zero in the second
and fourth layers, being rather large with the same sign in
the surface layers and with the opposite sign in the center
layer.
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For L = 6, only three ordered structures exist, the fer-
romagnetic, the 〈32〉, and the 〈23〉 phases. The transitions
between them are of first order. By decreasing the sur-
face interactions, the range of stability of the 〈32〉 phase
gets wider, with 1-bands at the surfaces for large compe-
tition ratio κ. This range and that of the ferromagnetic
phase shrink when enhancing the surface couplings, and
the 〈23〉 structure is favoured. Predictions of mean–field
theory were qualitatively confirmed in simulations.

Adding another layer to the film, L = 7, leads to
quite different phase diagrams, with possibly seven dis-
tinct ordered phases, namely the ferromagnetic, 〈43〉,
〈3103〉, 〈232〉, 〈322〉, 〈231〉, and 〈121021〉 phases, as found
in mean–field theory. For Js = Jb, the 〈232〉 phase ex-
tends down to zero temperature at 1/2 < κ < 1, while the
〈322〉 structure is stabilized only at intermediate temper-
atures, where the entropic effect of the small surface mag-
netization plays the crucial role [18]. Examples of phase
diagrams for different surface and bulk couplings are de-
picted in Figures 3a and b, for r = Js/Jb = 0.25 and 1.5,
as obtained from mean–field theory. Compared to the case
of Js = Jb, the enhancement or weakening of the surface
couplings may lead to similar trends as for L = 5, but also
to novel features. As before, when Js= 0, there is no tran-
sition line arising from the special point (T = 0, κ = 1),
i.e. the two asymmetric 〈322〉 and 〈231〉 structures trans-
form gradually into each other at non–zero temperatures,
with a vanishing magnetization in one of the surface layers
on approach to the special point. Indeed, even the transi-
tion line to the neighbouring asymmetric 〈43〉 phase termi-
nates in a critical point, above which all these asymmetric
structures belong to the same phase. Perhaps somewhat
unexpectedly, at 1/2 < κ < 1, the 〈322〉 structure forms
the low–temperature phase when r < (3 + κ)/4, while for
stronger surface couplings the symmetric 〈232〉 phase is
stable down to zero temperature. In the former case, the
symmetric phase is stable next to Tc, see Figure 3a. A sim-
ilar entropy–driven shift of the 3–band from the interior of
the film to one of its surfaces occurs at wider films, L odd,
as well, for sufficiently weak Js. The effect follows from the
low–temperature analysis, and it is described correctly by
mean–field theory.

In the case of L = 8, six ordered phases are ob-
served; the phase diagram as obtained from mean–field
theory for equal couplings Js = Jb has been shown be-
fore [18]. Apart from the trivial ferromagnetic and 〈24〉
phases, there is the 〈322〉 phase, which may, at sufficiently
strong surface couplings Js, arise from the multiphase
point (T = 0, κ = 1/2), with the symmetric 〈323〉 struc-
ture, formed at higher temperatures, remaining stable up
to the transition line to the paramagnetic phase, Tc. The
latter phase is stable down to the multiphase point for suf-
ficiently weak surface couplings, where entropy is gained,
again, from 3–bands at the surfaces, as follows from low–
temperature considerations, in agreement with mean–field
calculations. Actually, for small Js, the 〈323〉 phase per-
sists even for quite large values of the competition ratio κ.
Furthermore, the 〈53〉 phase may spring from the multi-
phase point. The antisymmetric 〈42〉 phase is stable close
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Fig. 3. Phase diagram of the ANNNI model for L = 7 at
Js/Jb= (a) 0.25 and (b) 1.5, as obtained from mean–field the-
ory. The critical point at the end of a line of transitions of first
order is denoted by an open circle.

to Tc, extending down to lower temperatures with decreas-
ing surface couplings.

In the case of nine layers, the rather complex phase
diagrams consist of up to nine ordered phases. Close
to Tc, increasing κ, the alternatingly symmetric and an-
tisymmetric phases are the ferromagnetic, 〈4104〉, 〈33〉,
〈221022〉, and 〈12321〉 phases. At low temperatures, one
may, in addition, encounter, the 〈241〉 phase as well as,
for fairly weak surface couplings, r < (3 + κ)/4, the 〈323〉
phase, and, for stronger couplings, the 〈2232〉 phase at
1/2 < κ < 1, similar to the situation in the case L = 7.
Again, this feature follows from the low–temperature anal-
ysis, and it is described correctly by mean–field theory, see
Figure 4 (the case Js = Jb has been depicted before [19];
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Fig. 4. Phase diagram of the ANNNI model for L = 9 at
Js/Jb = 0.95 using mean–field theory.

there, the 〈323〉 phase is squeezed out). Thence, by low-
ering the surface couplings, the 3–band eventually sticks
at the surface. In fact, the same phenomenon holds for
wider odd films as well. The transition line, separating the
structures with one 1–band from that with one 3–band
and arising from (T = 0, κ = 1), terminates again in a
critical point for moderate and weak surface couplings.
The point moves to zero temperature as Js vanishes. Per-
haps most interestingly, mean–field theory suggests that
the 〈54〉 phase is stable at intermediate temperatures, as
shown in Figure 4. Indeed, its existence has been con-
firmed in Monte Carlo simulations for equal surface, Js,
and bulk, Jb, couplings. The phase shows up below the
〈4104〉 phase which, in turn, becomes stable at about
the transition temperature of the two–dimensional Ising
model, like the corresponding partially disordered phases
for films with an odd number of layers.

Finally, for L = 10, seven distinct ordered phases have
been identified and located applying mean–field theory for
Js = Jb [19]. Close to the transition to the paramagnetic
phase, Tc, the ferromagnetic, 〈52〉, 〈343〉, 〈2322〉, and 〈25〉
phases occur. The 〈432〉 phase springs from the multiphase
point (T = 0, κ = 1/2). At intermediate temperatures, the
〈64〉 phase has been detected in a tiny region of the phase
diagram. The phase persists, when varying the surface
couplings. For sufficiently small values of Js, the 〈3223〉
phase is stabilized, at the cost of the 〈2322〉 phase, near the
multiphase point, reflecting again the gain of entropy due
to easy excitations of surface spins belonging to 3–bands
for structures comprising 3–bands and 2–bands.

4 Summary

The ANNNI model on thin films has been studied, using
mean–field theory, low–temperature analyses, and Monte
Carlo techniques. For each film thickness, varying the

number of layers from L = 3 to L = 10, distinct phase dia-
grams have been determined, monitoring surface–induced
features by also changing the strength of the couplings in
the surface layers.

In the limit of infinite lattices, L −→ ∞, the compet-
ing interactions of the ANNNI model lead to a phase dia-
gram with a rich variety of spatially modulated magnetic
structures. Signatures of some of these features, like the
sequence of commensurate phases springing from the mul-
tiphase point, are already present in thin films, with the
films displaying generic and distinct features as well. In
particular: (i) The ordered phases occuring directly below
the transition line to the paramagnetic phase are alter-
natingly, as the ratio κ = −J2/J1 between the competing
interactions of the model increases, symmetric and anti-
symmetric about the center of the film, leading to par-
tially disordered phases with a paramagnetic center plane
for films with an odd number of layers. (ii) The phases
springing from the multiphase point may include struc-
tures consisting not only of 2–bands and 3–bands, but
also with a 4–band or a 5–band. (iii) For L odd, there is
an additional transition line near κ = 1, separating phases
with 2–bands augmented by one 3–band or one 1–band.

By modifying the surface couplings, additional inter-
esting phenomena are induced. Indeed, the range of sta-
bility of the various phases as well as the type of phase
transition may be affected by varying the couplings. Entire
transition lines may, in fact, disappear. Perhaps most no-
ticeable, 3–bands may be forced to stick to the surface or
move to the interior of the film, thereby possibly forming
new phases with a different symmetry.

These findings may encourage experimental work on
thin films of magnets or alloys showing complicated spa-
tial orderings in the bulk. On the theoretical side, several
extensions of the present study seem to be promising, in-
cluding the effects of a larger number of layers, modified
interactions [33–36], and magnetic bulk as well as surface
fields, in order to possibly detect additional systematics in
the intriguing phase diagrams of the ANNNI model and
variants.

We would like to thank A. Gödecke for useful discussions.
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